Abstract

Dissimilar metal welding between the austenitic stainless steel and micro-alloyed steel was widely used in high-temperature applications in power stations and petrochemical plants. In the current research, the dissimilar metals between austenitic stainless steel and micro-alloyed steel have been joined by shielded metal arc welding (SMA), gas metal arc welding (GMA), and pulse gas metal arc welding (PGMA) processes. Welded samples of the aforementioned processes were subjected to comparative studies pertaining to the dendrite morphological characteristics. The study reveals that the process parameters affect the growth of dendrite arm because of the variation in the coefficient of thermal conductivity, expansion, and metallurgical incompatibility of the metals. In the PGMA welding process, the dendrite length decreases, while its width increases in all the locations of the weld by varying dimensionless factors ϕ (0.05, 0.15, and 0.25) and keeping its heat input as constant (Ω—11.2 kJ/cm). Among the welded joints, the PGMA weld joint comparatively exhibit shorter length (20 µm) and width (4 µm) of dendrite arm than the welded joints of the GMA and SMA processes. The change in the dendrite dimension is observed to be due to the variation in the dimensionless factor ϕ and the quantity of heat transfer to the weld (QT). The studies have been systematically planned in order to gain advanced scientific knowledge to establish superior technique for multi-pass PGMA welding of thick section of austenitic stainless steel to micro-alloy steel with respect to that used with conventional welding process.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.