Abstract

AbstractAlthough metallic lithium is a promising anode material due to its high theoretical capacity, the uncontrollable growth of lithium dendrites and infinite volume change hamper its practical applications. Here, the lithiophilic property of carbonized metal–organic frameworks (cMOFs) is harnessed with zinc species to achieve a uniform lithium‐cMOFs (Li‐cMOFs) hybrid via a molten lithium infusion approach. In the resultant Li‐cMOFs, not only are abundant Zn clusters are uniformly confined and dispersed in the matrix, serving as homogeneous nucleation sites to guide Li deposition, but also the 3D conductive porous structure enables the homogenization of the distributions of electric field and Li ion flux, avoiding the formation of lithium dendrites. Hence, this hybrid exhibits superior electrochemical performance with a very low voltage hysteresis and a good cycle life. This provides a new manner to achieve a series of stable metallic lithium anodes based on the large family of metal–organic frameworks with tunable metal species.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.