Abstract

Lithium (Li) metal batteries face challenges, such as dendrite growth and electrolyte interface instability. Artificial interface layers alleviate these issues. Here, cellulose nanocrystal (CNC) nanomembranes, with excellent mechanical properties and high specific surface areas, combine with polyvinylidene-hexafluoropropylene (PVDF-HFP) porous membranes to form an artificial solid electrolyte interphase (SEI) layer. The porous structure of PVDF-HFP equalizes the electric field near metallic lithium surfaces. The high mechanical modulus of CNC (6.2 GPa) effectively inhibits dendrite growth, ensures the uniform flow of lithium ions to the lithium metal electrode, and inhibits the growth of lithium dendrites during cycling. The synergy of high polarity β-phase poly(vinylidene fluoride) (PVDF) and CNC provides over 1000 h of stability for Li//Li batteries. Moreover, Li//LiFePO4 (LFP) full cells with this artificial protective layer perform well at 5 C, showcasing the potential of this film in lithium metal batteries.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.