Abstract
AbstractThe practical application of Li‐metal anode in high‐energy rechargeable Li batteries is still hindered by the uncontrollable formation of Li dendrites. Here, a facile way is reported to stabilize Li‐metal anode by building dendrite‐like Li3Mg7 alloys enriched with Li‐containing polymers as the physical protecting layer and LiH as the Li‐ion conductor. This unique dendritic structure effectively reduces local current density and accommodates volume change during the repeated Li plating/stripping process. More importantly, lithiophilic Li3Mg7 alloys not only guide the uniform Li deposition down into the below Li metal upon Li deposition, but also thermodynamically promote the extraction of Li during the reverse Li stripping process, which suppresses the parasitic reactions occurring on the surface of Li metal and hence inhibits the formation of Li dendrites. Moreover, the facile diffusion of Mg from Li3Mg7 alloys toward Li metal below is thermodynamically permitted, which leads to a uniform distribution of LiMg alloys inside the whole electrode and thus benefits long‐term deep cycling stability. As a result, the protected Li‐metal anode delivers stable and dendrite‐free cycling performance at 10 mA h cm−2 for over 900 h. When coupling this anode with LiFePO4 and S cathodes, the thus‐assembled full cells exhibit superior cycling stability.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.