Abstract

Potassium metal battery is an appealing candidate for future energy storage. However, its application is plagued by the notorious dendrite proliferation at the anode side, which entails the formation of vulnerable solid electrolyte interphase (SEI) and non-uniform potassium deposition on the current collector. Here, this work reports a dual-modification design of aluminum current collector to render dendrite-free potassium anodes with favorable reversibility. This work achieves to modulate the electronic structure of the designed current collector and accordingly attain an SEI architecture with robust inorganic-rich constituents, which is evidenced by detailed cryo-EM inspection and X-ray depth profiling. The thus-produced SEI manages to expedite ionic conductivity and guide homogeneous potassium deposition. Compared to the potassium metal cells assembled using typical aluminum current collector, cells based on the designed current collector realize improved rate capability (maintaining 400h under 50mA cm-2 ) and low-temperature durability (stable operation at -50 °C). Moreover, scalable production of the current collector allows for the sustainable construction of high-safety potassium metal batteries, with the potential for reducing the manufacturing cost.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.