Abstract
This paper describes a new method to replicate DNA and RNA microarrays. The technique, which facilitates positioning of DNA and RNA with submicron edge resolution by microcontact printing (muCP), is based on the modification of poly(dimethylsiloxane) (PDMS) stamps with dendrimers ("dendri-stamps"). The modification of PDMS stamps with generation 5 poly(propylene imine) dendrimers (G5-PPI) gives a high density of positive charge on the stamp surface that can attract negatively charged oligonucleotides in a "layer-by-layer" arrangement. DNA as well as RNA is transfer printed from the stamp to a target surface. Imine chemistry is applied to immobilize amino-modified DNA and RNA molecules to an aldehyde-terminated substrate. The labile imine bond is reduced to a stable secondary amine bond, forming a robust connection between the polynucleotide strand and the solid support. Microcontact printed oligonucleotides are distributed homogeneously within the patterned area and available for hybridization. By using a robotic spotting system, an array of hundreds of oligonucleotide spots is deposited on the surface of a flat, dendrimer-modified stamp that is subsequently used for repeated replication of the entire microarray by microcontact printing. The printed microarrays are characterized by homogeneous probe density and regular spot morphology.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.