Abstract

Dendrimer-stabilized gold nanoparticles (Au-Den) were prepared by a facile solution based method for a highly reliable and robust surface enhanced Raman scattering (SERS) substrate. Au-Den was selectively attached on the surface of reduced graphene oxide (rGO) by noncovalent interactions between the Au capping dendrimer and the graphene surface. Au-Den/rGO exhibits the outstandingly stable and highly magnified Raman signal with an enhancement factor (EF) of 3.9 × 10(7) that enables detection of R6G dyes with concentration as low as 10 nM, retaining 95% of the Raman signal intensity after 1 year. The remarkable stability and enhancement originated not only from a simple combination of the electromagnetic and chemical mechanism of SERS but also from intensified packing density of stable Au-Den on the graphene substrate due to the firm binding between the dendrimer capped metal nanoparticles and the graphene substrate. This method is not limited to the gold nanoparticles and G4 dendrimer used herein, but also can be applied to other dendrimers and metal nanoparticles, which makes the material platform suggested here superior to other SERS substrates.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.