Abstract

ABSTRACTControl of particle-particle spacing is a key determinant of optical, electronic, and magnetic properties of nanocomposite materials. We have used poly(amidoamine) (PAMAM) dendrimers to assemble carboxylic acid-functionalized mixed monolayer protected clusters (MMPCs) through acid/base chemistry between particle and polymer. IR spectroscopy and selective dendrimer staining, observed by Transmission Electron Microscopy (TEM), establish that the PAMAM dendrimers are the mortar in the assembly and act to space the MMPCs in the resulting aggregates. Small angle X-ray scattering (SAXS) was then used to establish average interparti cle distances; five generations of PAMAM dendrimer (0, 1, 2, 4, 6) were investigated and monotonic increase in interparticle spacing from 4.1 nm to 6.1 nm was observed.Initial studies involving the application of this methodology to control the magnetic properties of 3-iron oxide nanoparticles have been completed. γ-Iron oxide nanoparticles (6.5 nm in diameter) have been assembled with PAMAM dendrimers generations 2.5, 4.5, and 6.5. The resulting aggregates were characterized with SAXS and magnetization obtained on a super conducting quantum interference devise (SQUID). An observed correlation between the blocking temperature (TB) and the average interparticle spacing suggests that our methodology could be used to tailor the magnetic profile of the nanoparticles.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.