Abstract

Acute renal failure (ARF) induced by sepsis has a high mortality. In an aged mouse model of sepsis-induced ARF we have previously shown that renal injury occurs before serum creatinine is elevated. Development of a noninvasive biomarker that could diagnose renal dysfunction early in sepsis and monitor the response to therapy would be very valuable. We performed magnetic resonance imaging (MRI) with gadolinium-based G4 dendrimer intravenous contrast in a fluid- and antibiotic-treated cecal ligation and puncture (CLP) sepsis model in aged mice. Imaging was also performed in a mouse volume depletion model and in models of ARF induced by ischemia/reperfusion (I/R) and cisplatin. Twenty hours post-CLP, aged mice had a distinct pattern of renal injury using dendrimer-enhanced MRI. This pattern was different from renal injury induced by either cisplatin or I/R. Prerenal azotemia induced by volume depletion was distinguished from sepsis by dendrimer-enhanced MRI. Dendrimer-enhanced MRI detected renal dysfunction 6 hours post-CLP, a time when serum creatinine was still normal. Ethyl pyruvate reversed the renal dysfunction detected by dendrimer-enhanced MRI at 20 hours, but not at 6 hours post-CLP. The appearance of renal dysfunction on dendrimer-enhanced MRI at 6 hours post-CLP predicted the length of survival. Dendrimer-enhanced MRI is a novel biomarker that provides information for the early diagnosis, drug responsiveness, and prognosis of sepsis-induced ARF.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.