Abstract
The chlamydiae are important human pathogens. Lack of a genetic manipulation system has impeded understanding of the molecular bases of virulence for these bacteria. We developed a dendrimer-enabled system for transformation of chlamydiae and used it to characterize the effects of inserting the C. trachomatis plasmid into C. pneumoniae, which lacks any plasmids. The plasmid was cloned into modified yeast vector pEG(KG) and the clone complexed to polyamidoamine dendrimers, producing 50–100nm spherical particles. HEp-2 cell cultures were infected with C. pneumoniae strain AR-39. Twenty-four hours later, medium was replaced for 3hours with dendrimer-plasmid complexes, then removed and the medium replaced. Cultures were harvested at various times post-transformation. Real-time PCR and RT-PCR of nucleic acids from transformed cultures demonstrated plasmid replication and gene expression. The cloned plasmid was replicated and expressed in transformants over 5 passages. This system will allow study of chlamydial gene function, allowing development of novel dendrimer-based therapies. From the Clinical EditorThis team of investigators developed a dendrimer-enabled system for transformation of chlamydiae and successfully utilized it to characterize the effects of inserting the C. trachomatis plasmid into C. pneumonia. This system will allow study of chlamydial gene function, allowing development of novel dendrimer-based therapies.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Nanomedicine: Nanotechnology, Biology and Medicine
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.