Abstract
Non-steroidal anti-inflammatory drugs (NSAIDs) have been recognized as a potentially serious threat to the natural environment. NSAIDs are popular painkillers, and the main pathway for them to reach natural water is via discharge from wastewater and sewage treatment plants. In order to monitor contamination caused by these drugs, as well as their impact on the environment, a new material based on Silica Gel 60, functionalized with a dendrimeric copolymer of methylamine and 1,4-butanediol diglycidyl ether (named MA-BDDE), was prepared. Initial physicochemical characterization of the MA-BDDE material was carried out using ATR FT-IR spectroscopy as well as solid-state carbon-13 NMR spectroscopy. Its effectiveness at NSAID extraction was evaluated by the application of five select drugs in dispersive solid-phase extraction (dSPE): aspirin, ketoprofen, naproxen, diclofenac and ibuprofen. This was followed by their simultaneous determination using the HPLC-UV/Vis system demonstrating good sensitivity, with limits of detection values within the 63-265 ng mL-1 range. A comparison of the sorption capacity of each pharmaceutical with unmodified base silica showed an at least tenfold increase in capacity after modification. Initial MA-BDDE application in a quick, low-waste extraction procedure of those select NSAIDs from spiked surface water samples yielded promising results for its use as a sorbent, as recovery values of analytes adsorbed from various samples were found to exceed 72%.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.