Abstract

<p class="MDPI17abstract"><span lang="EN-US">The paper presents a modified Denavit-Hartenberg coordinate system resulted from joint application of graph theory and the Denavit-Hartenberg coordinate system, which was developed to describe the kinematics of robot actuators with a linear open kinematic chain. It allows forming mathematical models of actuating mechanisms for the robots with tree-like kinematic structures. The work introduces the concept of primary and auxiliary coordinate systems. It considers an example of making the links’ reachability matrix and reachability graph for the tree-like actuating mechanism of a robotic mannequin. The use efficiency of the proposed modified Denavit-Hartenberg coordinate system is illustrated by the examples giving the mathematical description of the kinematics and dynamics of specific robots’ tree-like actuating mechanisms discussed in the previously published papers. It is shown that the proposed coordinate system can also be successfully applied to describe the actuating mechanisms of robots with a linear open kinematic chain, which is a particular case of the tree-like kinematic structure. The absence of branching joints in it does not require introducing auxiliary coordinate systems and the parameters f(i) and ns(i) are necessary only for the formal notation of equations, which have similar forms for the tree-like and linear chains. In this case, the modified and traditional coordinate systems coincide.</span></p>

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call