Abstract

Anantifouling sensing surface was constructed by crosslinking two-dimensional nanomaterial MXene with bovine serum albumin (BSA) denatured by urea previously. The immunoglobulin G (IgG) capture peptide was then modified to the surface to construct a highly selective antifouling electrochemical biosensor. Due to the large specific surface area and good electrical conductivity of MXene, the sensitivity of the biosensor is significantly enhanced. The biosensor at a working potential of around - 0.18V (vs. Ag/AgCl) provides a wide linear detection range (0.1 ng/mL to 10 µg/mL)for IgGwith alimit of detection of 23pg/mL (3σ/k). The result is consistent with that obtained from the commercial enzyme-linked immunosorbent kit. Compared with BSA, which is usually used as a passivator or blocker for biosensing platforms, the hydrogel formed through the peptide chain obtained from BSA with good hydrophilicity can provide a better antifouling sensing surface to resist nonspecific adsorption. The prepared biosensor can quantitatively detect the concentration of IgG in complex human serum with high sensitivity. Thus, the antifouling sensing surface constructed without expensive antifouling materials and complex process is expected to develop as a variety of electrochemical biosensors and used for the clinical testing of biomarkers. Graphical abstract An antifouling sensing surface was constructed by crosslinking two-dimensional nanomaterial MXene with bovine serum albumin (BSA) denatured by urea previously. The immunoglobulin G (IgG) capture peptide was then modified to the surface to construct a highly selective antifouling electrochemical biosensor.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call