Abstract
Thermal transitions of type I collagen fibrils were investigated by differential scanning calorimetry and spectrophotometry of turbidity within a wide range of external conditions. The advanced microcalorimeter allowed us to carry out the measurements at low concentrations of collagen (0.15-0.3 mg/mL). At these concentrations of collagen and under fibril-forming conditions, the melting curves display two pronounced heat adsorption peaks (at 40 and 55 degreesC). The low-temperature peak was assigned to the melting of monomeric collagen, while the high-temperature peak was assigned to the denaturation of collagen fibrils. It was shown that the denaturation of fibrils, in contrast to the monomeric collagen, is accompanied by a noticeable change in the partial specific heat capacity. Surprisingly, comparison of the collagen calorimetric curves in the fibril-forming and nonforming conditions revealed that DeltaCp of fibril denaturation is caused by a decrease in the Cp of collagen at premelting temperatures. This suggests the existence of an intermediate structural state of collagen in a transparent solution preceding fibril formation. Our study also shows that collagen fibrils formed prior to heating have thermodynamic parameters different from those of fibrils formed and denatured during heating in the calorimeter. Analysis of the data allowed us to determine the denaturation enthalpy of the mature fibrils and to conclude that the enthalpy plays a more important role in fibril stabilization than was previously assumed. The observed large DeltaCp value of fibril denaturation as well as the difference between thermodynamic parameters of the mature and newly formed fibrils is readily explained by the presence of water molecules in the fibril structure.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.