Abstract
Protein thermodynamic stability is intricately linked to cellular function, and altered stability can lead to dysfunction and disease. The linear extrapolation model (LEM) is commonly used to obtain protein unfolding free energies ([Formula: see text]) by extrapolation of solvent denaturation data to zero denaturant concentration. However, for some proteins, different denaturants result in non-coincident LEM-derived [Formula: see text] values, raising questions about the inherent assumption that the obtained [Formula: see text] values are intrinsic to the protein. Here, we used single-molecule FRET measurements to better understand such discrepancies by directly probing changes in the dimensions of the protein G B1 domain (GB1), a well-studied protein folding model, upon urea and guanidine hydrochloride denaturation. A comparison of the results for the two denaturants suggests denaturant-specific structural energetics in the GB1 denatured ensemble, revealing a role of the denatured state in the variable thermodynamic behavior of proteins.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.