Abstract

Epidemiological studies revealed deficits in cognitive learning and memory in smokers who withdrawal from smoking, but the molecular mechanisms underlying it is unclear. Here, we employed the novel object recognition task (NORT) to evaluate cognitive memory and found impaired memory and motor skills after withdrawal from chronic nicotine. Myelin sheath hastens the conduction of signals along axons and thus plays a critical role in learning and memory. We found no effect of nicotine withdrawal on the myelination in both of the Ventral tegmental area (VTA) and Nucleus accumbens (NAc) regions, but unexpectedly, we observed a demyelination phenomenon in the medial prefrontal cortex (mPFC) after withdrawal from chronic nicotine. Moreover, we found a positive correlation between the impaired memory and demyelination, and pharmaceutical rescue of myelination by clemastine specifically improved the impaired recognition memory but not the decreased motor skills caused by withdrawal from chronic nicotine. We further found nicotine directly acts on oligodendrocytes with OPCs potential to decrease their myelination process. Taken together, these results demonstrate demyelination in the mPFC causes impaired recognition memory and reveal a potential of enhancing myelination as a therapeutic strategy to alleviate cognitive memory deficits caused by smoking withdrawal.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.