Abstract

Oleic acid (OA)-coated magnetite (Fe3O4) nanoparticles, denoted Fe3O4@OA, were synthesized by co-precipitation in the presence of varying contents of OA. The Fe3O4@OA nanoparticles were characterized by X-ray diffraction, transmission and scanning electron microscopies, Fourier transform infrared spectroscopy, thermogravimetric–differential thermogravimetric analyses, and vibrating sample magnetometry. Increasing the OA content during preparation resulted in an increase of the OA-coating amount (AO, in units of g of OA/g of Fe3O4) on the Fe3O4 surface, before reaching an equilibrium value. The resulting magnetic nanoparticles were nearly spherical with a size of ∼12–14 nm. OA molecules formed a single layer coating on the Fe3O4 surface. The AO and area occupied by a single OA molecule at saturation coating were estimated to be 0.11 g g–1 (1.22 mg m–2) and 0.37 nm2, respectively. The Fe3O4@OA nanoparticles were applied in the demulsification of a cyclohexane-in-water nanoemulsion, under an external magnetic field. The effects of AO, demulsifier dosage, pH, and electrolytes on the demulsification efficiency (ED) were investigated. The ED increased and then decreased with increasing AO, which was attributed to a change in wettability of the magnetic nanoparticles. A maximum ED of ∼98% was observed at a ∼90° contact angle between water and the magnetic nanoparticles. The ED was independent of pH and electrolyte (NaCl or CaCl2) concentration, under the studied conditions. The magnetic demulsifier exhibited excellent stability after reuse over 6 cycles. Fe3O4@OA nanoparticles are effective for oil–water multiphase separation and treating oily wastewater.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.