Abstract
We consider situations in which each individual member of a defined object set is characterized uniquely by a set of variables, and we propose models and associated methods that recognize or classify a newly observed individual. Inputs consist of uncertain observations on the new individual and on a memory bank of previously identified individuals. Outputs consist of uncertain inferences concerning degrees of agreement between the new object and previously identified objects or object classes, with inferences represented by Dempster–Shafer belief functions. We illustrate the approach using models constructed from independent simple support belief functions defined on binary variables. In the case of object recognition, our models lead to marginal belief functions concerning how well the new object matches objects in memory. In the classification model, we compute beliefs and plausibilities that the new object lies in defined subsets of an object set. When regarded as similarity measures, our belief and plausibility functions can be interpreted as candidate membership functions in the terminology of fuzzy logic. © 2006 Wiley Periodicals, Inc. Int J Int Syst 21: 283–297, 2006.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.