Abstract

In this work, we demonstrate the design and implementation of a novel privacy-preserving blockchain for the resource-constrained Internet of Things (IoT). Blockchain, by design, ensures trust, provides built-in integrity of information and security of immutability in an IoT system without the need of a centralized entity. However, its slow transaction rate, lack of transaction privacy, and high resource consumption are three of the major hindrances to the practical realization of blockchain in IoT. While directed acyclic graphs (DAG)-based blockchain variants (e.g., hashgraph) improve the transaction rate, the other two problems remain open. To this end, we designed and constructed the prototype of a blockchain by utilizing the benefits of high transaction rate and miner-free transaction validation process from hashgraph. The proposed blockchain, coined as PrivLiteChain, implements the concept of local differential privacy to provide transaction privacy and temporal constraint to the lifecycle of the blockchain to make it lightweight.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call