Abstract

Simple SummaryStatic electric field (SEF) treatment by high-voltage alternating current is a traditional complementary medicine in Japan. Although it is believed that the SEF-induced electric current serves to regulate cellular or humoral responses in patients, the mechanism for SEF treatment remains poorly understood. There have been very few experimental reports on the biological action with SEF treatment. The aim of this study was to elucidate the effects of SEF treatment on vitamin D3 (Vit D3)-induced abnormalities in mice. SEF treatment improved the abnormalities in the renal function tests and the imbalance of serum electrolytes. In addition, this treatment remarkably attenuated the Vit D3-induced tissue injuries (severe tissue calcification in the kidneys, hearts, and stomachs). It was likely that the SEF treatment had some favorable effects on the metabolism of calcium. In conclusion, this study provides important evidence that SEF treatment can reduce hypercalcemia and remove calcium deposits from the renal, cardiac, and gastric tissues. SEF treatment is useful in the regulation of disorders caused by an imbalance of serum electrolytes. This study experimentally demonstrates the favorable effects of SEF treatment on Vit D3-induced hypercalcemia. For small animals, the larger the body surface area per body weight becomes, the higher the therapeutic efficacy with SEF treatment.The purpose of this study was to elucidate the effects of static electric field (SEF) treatment on vitamin D3 (Vit D3)-induced hypercalcemia and renal calcification in mice. The mice were assigned to three groups: Vit D3-treated mice, mice treated with Vit D3 and SEF (Vit D3 + SEF), and untreated mice. After the administration of Vit D3, the Vit D3 + SEF-treated mice were exposed to SEF treatment by a high-voltage alternating current over five days. Serum biochemical examinations revealed that both the creatinine and blood urea nitrogen concentrations were significantly higher in the Vit D3-treated group. Significantly, decreased Cl concentrations, and increased Ca and inorganic phosphorus concentrations, were found in the Vit D3-treated group. In the Vit D3 + SEF-treated group, these parameters returned to the levels of the untreated group. In the Vit D3-treated group, histopathological examinations showed marked multifocal calcification in the lumens of the renal tubules and the renal parenchyma. The myocardium was replaced by abundant granular mineralization (calcification), with degeneration and necrosis of the calcified fibers. The stomach showed calcification of the cardiac mucosa. SEF treatment remarkably attenuated the Vit D3-induced hypervitaminotic injuries. In conclusion, this study provides important evidence that SEF treatment can reduce hypercalcemia and remove calcium deposits from the renal, cardiac, and gastric tissues. SEF treatment is useful in the regulation of disorders caused by an imbalance of serum electrolytes.

Highlights

  • Static electric field (SEF) treatment by high-voltage alternating current is a traditional complementary medicine used for headache, shoulder stiffness, chronic constipation, and insomnia

  • The purpose of this study was to elucidate the effects of SEF treatment on vitamin D3 (Vit D3 )-induced hypercalcemia and renal calcification in mice

  • No significant differences in the TP and ALB concentrations among the three groups

Read more

Summary

Introduction

Static electric field (SEF) treatment by high-voltage alternating current is a traditional complementary medicine used for headache, shoulder stiffness, chronic constipation, and insomnia. The safety of long-term continuous exposure has been confirmed by a study using mice [2]. The effect of the alternating current electrostatic high-voltage potential load was reported by a Japanese investigator in 1961 [3]. SEF exposure induced changes in the serum electrolytes (Ca, Mg, and phosphorus) of rabbits. It is believed that the SEF-induced electric current serves to regulate the cellular or humoral responses in patients [4]. There have been very few experimental reports on the biological action with SEF treatment (one study reports the inhibition of a rheumatoid arthritis model in mice) [5]

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call