Abstract

This work presents illustrative applications of the 2nd-BERRU-PM (second-order best-estimate results with reduced uncertainties predictive modeling) methodology to the leakage response of a polyethylene-reflected plutonium OECD/NEA reactor physics benchmark, which is modeled using the neutron transport Boltzmann equation. The 2nd-BERRU-PM methodology simultaneously calibrates responses and parameters while simultaneously reducing the predicted standard deviation values of these quantities. The situations analyzed in this work pertain to the values of measured responses that appear to be inconsistent with the computed response values, in that the standard deviation values of the measured responses do not initially overlap with the standard deviation values of the computed responses. It is shown that the inconsistency diminishes as higher-order sensitivities are progressively included, thus illustrating their significant impact. In all cases, the 2nd-BERRU-PM methodology yields predicted best-estimate standard deviation values that are smaller than both the computed and the experimentally measured values of the standard deviation for the model response under consideration.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.