Abstract

Previously, we reported the isolation of Klebsiella pneumoniae subspecies pneumoniae strain Kp 5-1 from a southern green stink bug (Nezara viridula) that is a significant pest of numerous economically important crops. We subsequently sequenced the strains whole genome. Here, we report the presence of a functional plasmid-borne type IV secretion (TFSS) system that was identified using genomic mining of the annotated genome. Comparison of the Kp 5-1 resident 186kb plasmid (pKp 5-1) with nine other Klebsiella with plasmids of comparable size from clinical and environmental strains revealed putative TFSS with identities ranging from 70 to 99%. A primer set was designed at the pKp 5-1 region that shared homology with traC of the conjugation capable F-plasmid. The 2.4kb amplified PCR product was cloned, sequenced, and used in hybridization experiments verify that the predicted gene was extra-chromosomally located. Based on biparental mating experimental results, a K. pneumoniae Kp 5-1 derivative transformed with the non-self-transmissible pMMB207αβ (an IncQ RSF1010 derivative) mobilized the vector into the parental strain with transfer frequencies of 10-3 transconjugants/donor. Identification of a TFSS in strain Kp 5-1 is significant since in other systems the mobilization capacity is involved in dissemination of plasmids that may confer antibiotic resistance and/or the delivery of virulence proteins into host cells, and thus may have an important role in the fitness of this strain as well. This is the first report that both compared and demonstrated functionality of a plasmid-harbored TFSS in a K. pneumoniae isolated from a N. viridula.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call