Abstract
This paper presents the results from field tests that were carried out with the aim of verifying the performance of a model predictive control-based voltage controller. A voltage source converter capable of producing or consuming 4 MVAr was used as the reactive power source, which was able to influence the voltage magnitude at a remote bus within a real distribution system in Gothenburg, Sweden. The voltage controller is designed to maintain the remote bus voltage within a pre-defined range while respecting the reactive power output capability of the voltage source converter and an objective of minimum changes to the reference value of its local reactive power controller. Results from the field tests demonstrate that the voltage controller was able to successfully regulate the voltage even with significant errors in the state-space prediction model. An important lesson learned from the field test is that a smoothened voltage measurement feedback is critical to a satisfactory functioning of the controller. Furthermore, it is recommended to design the voltage controller to observe an initial delay, before it is activated for bus voltage control- this would deter it from unnecessarily reacting at the very instant it is brought online.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.