Abstract

Optical directed logic is a novel logic operation scheme that employs electrical signals as operands to control the working states of optical switches to perform the logic operations. In this Letter, we propose and demonstrate an integrated photonic circuit which can implement five different optical logic operations by utilizing two optical modes. The proposed device is fabricated on a silicon-on-insulator substrate by using electron beam lithography and inductively coupled plasma etching processes. The static experimental results show that the fabricated device can implement five different operations correctly-XOR, XNOR, NOR, NOT, and AND-from which we can see that the signal-to-noise ratios are larger than 17.6 dB over the entire C band for all five logic functions. At last, all five logic operations with the speed of 10 Kbps are demonstrated. The proposed device with simple structure, large bandwidth, and versatility would be a promising candidate for information processing in optical mode division multiplexing networks.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call