Abstract
Unmanned aerial vehicles (UAVs) can serve as a powerful mobile sensing platform for assessing the health of civil infrastructure systems. To date, the majority of their uses have been dedicated to vision and laser-based spatial imaging using on-board cameras and LiDAR units, respectively. Comparatively less work has focused on integration of other sensing modalities relevant to structural monitoring applications. The overarching goal of this study is to explore the ability for UAVs to deploy a network of wireless sensors on structures for controlled vibration testing. The study develops a UAV platform with an integrated robotic gripper that can be used to install wireless sensors in structures, drop a heavy weight for the introduction of impact loads, and to uninstall wireless sensors for reinstallation elsewhere. A pose estimation algorithm is embedded in the UAV to estimate the location of the UAV during sensor placement and impact load introduction. The Martlet wireless sensor network architecture is integrated with the UAV to provide the UAV a mobile sensing capability. The UAV is programmed to command field deployed Martlets, aggregate and temporarily store data from the wireless sensor network, and to communicate data to a fixed base station on site. This study demonstrates the integrated UAV system using a simply supported beam in the lab with Martlet wireless sensors placed by the UAV and impact load testing performed. The study verifies the feasibility of the integrated UAV-wireless monitoring system architecture with accurate modal characteristics of the beam estimated by modal analysis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.