Abstract

We demonstrate two-dimensional photonic crystals of silicon carbide (SiC)-a wide bandgap semiconductor and one of the hardest materials-at near-infrared wavelengths. Although the refractive index of SiC is lower than that of a conventional semiconductor such as GaAs or Si, we show theoretically that a wide photonic bandgap, a broadband waveguide, and a high-quality nanocavity comparable to those of previous photonic crystals can be obtained in SiC photonic crystals. We also develop a process for fabricating SiC-based photonic crystals that experimentally show a photonic bandgap of 200 nm, a waveguide with a 40-nm bandwidth, and a nanocavity with a high quality factor of 4,500. This demonstration should stimulate further development of resilient and stable photonics at high power and high temperature analogous to SiC power electronics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.