Abstract

Thin film compression to the single-cycle regime combined with relativistic compression offers a method to transform conventional ultrafast laser pulses into attosecond X-ray laser pulses. These attosecond X-ray laser pulses are required to drive wakefields in solid density materials which can provide acceleration gradients of up to TeV/cm. Here we demonstrate a nearly 99% energy efficient compression of a 6.63 mJ, 39 fs laser pulse with a Gaussian mode to 20 fs in a single stage. Further, it is shown that as a result of Kerr-lensing, the focal spot of the system is slightly shifted on-axis and can be recovered by translating the imaging system to the new focal plane. This implies that with the help of wave-front shaping optics the focusability of laser pulses compressed in this way can be partially preserved.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call