Abstract

The der(16)t(1;16) has been detected cytogenetically in a number of malignancies including Ewing tumors (ETs). To enable fast and reliable analysis of der(16) chromosomes, we established an interphase cytogenetic approach. By using two DNA probes hybridizing to the heterochromatic portions on the long arms of chromosomes 1 and 16, this technique allows the detection of this chromosomal aberration in nonproliferating cells. Formation of the der(16) leads to partial excess of 1q material and partial loss of the long arm of chromosome 16. Double-target fluorescence in situ hybridization (FISH) experiments were performed on cytospin slides of 13 ETs, near-triploid tumor cells and normal cells to assess whether the FISH technique used permits the discrimination of nuclei harboring this aberration from nuclei without a der(16) chromosome. In five ETs, we found evidence for the presence of one or two der(16)t(1;16) chromosomes both by FISH and by conventional cytogenetics. Tumor cells displayed two signals for intact chromosomes 1, one or two additional fused signals for the der(16) chromosomes, and one signal for the intact chromosome 16. In one case without fused signals, the presence of a der(16) was demonstrated by hybridizing a painting probe for chromosome 16 simultaneously with the paracentromeric probe for chromosome 1. Our results suggest that double-target FISH on interphase nuclei offers an ideal tool for analyzing tumors prospectively and retrospectively to assess the biological role and the possible prognostic impact of the der(16) in ETs and in other solid tumors.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call