Abstract

The potential contribution of thiolimidate formation to the increased kinetic acidity of the α-proton of acetyl-CoA in the carbon-carbon bond forming reaction catalyzed by 3-ketoacyl-CoA thiolase (thiolase I) from porcine heart was assessed by chemical modification and isotope exchange experiments. Thiolase is only partially inactivated after the chemical modification of lysine residues by reductive methylation, pyridoxal phosphate, or o-phthaldehyde (specific for vicinal lysine and cysteine). The thiolase-catalyzed formation of acetyl-CoA from acetoacetyl-CoA and CoASH in 18OH2 is not accompanied by the appearance of 18O in the acetyl-CoA product. These experiments effectively rule out participation of thiolimidate formation in the thiolase reaction. Other mechanisms must be employed to facilitate the abstraction of the α-proton of acetyl-CoA by thiolase I.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call