Abstract

AbstractThe Defense Waste Processing Facility (DWPF), at the Savannah River Site (SRS), is processing and immobilizing the radioactive high level waste sludge at SRS into a durable borosilicate glass for final geological disposal. The DWPF is currently processing the second, million gallon batch of radioactive sludge. This second batch is primarily from Tank 42. Each time a new batch of radioactive sludge is to be processed by the DWPF, the process flowsheet is to be tested and demonstrated to ensure an acceptable melter feed and glass can be made. This demonstration was completed in the Shielded Cells Facility in the Savannah River Technology Center at SRS.This paper presents the processing and offgas data, and compositional analyses obtained during the preparation of a melter feed for this demonstration. A second paper in this conference describes the properties of the glass produced from this feed. The demonstration used Tank 42 sludge slurry and the DWPF process control strategy for blending the sludge slurry with Frit 200 to make an acceptable melter feed. To prepare feed for the melter, the flowsheet requires that the radioactive sludge slurry be treated with nitric and formic acid to adjust rheology and remove mercury. During this step, hydrogen is formed from the decomposition of the formic acid. The acidified sludge slurry is then mixed with the prescribed amount of glass forming frit and evaporated to the proper weight percent solids to prepare feed to the melter. During this step hydrogen is also formed. Results indicate that the H2 generation rate is below the DWPF safety limits and an acceptable melter feed was produced.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.