Abstract

Three sets of tungsten coated graphite divertor tiles (VPS-W tiles) were installed in the closed helical divertor of the Large Helical Device (LHD) instead of the graphite divertor tiles in the 2012FY plasma campaign for examining the plasma wall interaction (PWI) with divertor plasma. The first wall panels and divertor tiles of the LHD consist of stainless steels (SUS316L) and graphite, respectively. The carbon based mixed-material deposition layer including a very small amount of Fe element has been formed on not only the divertor tiles but also the first walls near the divertor tiles through the PWI processes. Such a mixed layer often causes undesirable influences for maintaining a long pulse discharge in LHD, e.g., changing the particle recycling properties and dust generation. After the single plasma campaign of the 2012FY, we confirmed drastic suppression of the mixed-material deposition layer on the first wall panels just under the VPS-W tiles. On the other hand, carbon based mixed-material deposition layer was formed on the VPS-W tile surface, where the amount of the hydrogen retention was estimated to be over ∼4 × 1021 H/m2. If we would want further suppression of the hydrogen retention on the VPS-W tiles, the plasma facing components should be replaced to a full metal wall to avoid formation of the carbon co-deposition layer.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.