Abstract

Spontaneous symmetry breaking in reactive systems, known as a rare physical phenomenon and for the Soai autocatalytic irreversible reaction, might in principle also occur in other, more common asymmetric reactions when the chiral product is capable to promote its formation and an element of "nonlinearity" is involved in the reaction scheme. Such phenomena are long sought after in chemistry as a possible explanation for the biological homochirality of biomolecules. We have investigated homogeneous organic stereoselective Mannich and Aldol reactions, in which the product is capable to form H-bridged complexes with the prochiral educt, and found by applying NMR spectroscopy, HPLC analysis, and optical rotation measurements 0.3-50.8% of random product enantiomeric excess under essentially achiral reaction conditions. These findings imply a hitherto overlooked mechanism for spontaneous symmetry breaking and, hence, a novel approach to the problem of absolute asymmetric synthesis and could have also potential significance for the conundrum of homochirality.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call