Abstract

We demonstrate measurement of RF signals in the 2-19 GHz band using a photonic compressive sensing (CS) receiver. The RF is modulated onto chirped optical pulses that then propagate through a multimode fiber that produces the random projections needed for CS via optical speckle. Our system makes 16 independent measurements per optical pulse and we demonstrate several calibration techniques to obtain the CS measurement matrix from these measurements. Then a standard penalized l1 norm method recovers amplitude, phase, and frequency of single-tone and two-tone RF signals with about 100 MHz resolution in a single 4.5 ns pulse. A novel subspace method recovers the frequency to about 20 kHz resolution over 100 pulses in a 2.8 microsecond time window. These experiments use discrete fiber-coupled optical components, but all necessary functions can be realized in photonic and electronic integrated circuits.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.