Abstract

We present experimental results demonstrating the phenomenon of acoustic transparency with a significant slowdown of sound propagation realized with a series of paired detuned acoustic resonators (DAR) side-attached to a waveguide. The phenomenon mimics the electromagnetically induced transparency in atomic physics. By arranging four identical DAR pairs along the waveguide with an equal subwavelength separation between adjacent pairs, we show that this arrangement features unique properties of narrow-band transmission and strong dispersion. In particular, we demonstrate side-lobe suppression of more than 20 dB on both sides of the transparency window, and we quantify directly (using a pulse propagation) the acoustic slowdown effect, resulting in the sound group velocity of \ensuremath{\sim}9.8 m/s (i.e. in the group refractive index of 35). We find very similar values of the group refractive index by using measurements of the phase of the transmitted wave. It is also shown that a direct coupling exists between the DAR in each pair, which cannot be explained by the interference of waves radiated from those resonators. This detrimental coupling becomes noticeable for small values of detuning and also if the cross-sectional area of the neck of the resonators is increased.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.