Abstract

In ultrafast multimode lasers, mode locking is implemented by means of saturable absorbers or modulators, allowing for very short pulses. This occurs because of nonlinear interactions of modes with well equispaced frequencies. Though theory predicts that, in the absence of any device, mode locking would occur in random lasers, this has never been demonstrated so far. Through the analysis of multimode correlations we provide clear evidence for nonlinear mode coupling in random lasers. The behavior of multiresonance intensity correlations is tested against the nonlinear frequency matching condition equivalent to the one underlying phase locking in ordered ultrafast lasers. Nontrivially large correlations are clearly observed for spatially overlapping resonances that sensitively depend on the frequency matching condition to be satisfied, eventually demonstrating the occurrence of nonlinear mode-locked mode coupling. This is the first example, to our knowledge, of an experimental realization of self-starting mode locking in random lasers, allowing for many new developments in the design and use of nanostructured devices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.