Abstract
We demonstrate a quantum-enhanced lidar capable of performing confident target detection and rangefinding in the presence of strong, time-varying classical noise whilst operating with over five orders of magnitude separation between signal and background levels and target reflectivities down to -52 dB. We use a log-likelihood-based framework to introduce a new protocol for dynamic background tracking, verifying resilience of our system to both fast- and slow-modulation jamming in regimes where a classical illumination-based system fails to find a target. These results demonstrate the advantage of exploiting quantum correlations for lidar applications, providing a clear route to implementation in real-world scenarios.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.