Abstract


 
 
 Prognostics-enabled Decision Making (PDM) is an emerging research area that aims to integrate prognostic health information and knowledge about the future operating conditions into the process of selecting subsequent actions for the system. Previous work developing and testing PDM algorithms has been done in simulation; this paper describes the effort leading to a successful demonstration of PDM algorithms on a hardware mobile robot platform. The hardware platform, based on the K11 planetary rover prototype, was modified to allow injection of selected fault modes related to the rover’s electrical power subsystem. The PDM algorithms were adapted to the hardware platform, including development of a software module framework, a new route planner, and modifications to increase the algorithms’ robustness to sensor noise and system timing issues. A set of test scenarios was chosen to demonstrate the algorithms’ capabilities. The modifications to run with a hardware platform, the test scenarios, and the test results are described in detail. The results show a successful use of PDM algorithms on a hardware test platform to optimize mission planning in the presence of electrical system faults.
 
 

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.