Abstract

The recently available Landsat Analysis Ready Data (ARD) are provided as top of atmosphere (TOA) and atmospherically corrected (surface) reflectance tiled products and are designed to make the U.S. Landsat archive for the United States straightforward to use. In this study, the utility of ARD for 30 m percent tree cover mapping is demonstrated and the impact of different ARD processing levels on mapping accuracy examined. Five years of Landsat 5 and 7 ARD over 12 tiles encompassing Washington State are considered using an established bagged regression tree methodology and training data derived from Goddard LiDAR Hyperspectral & Thermal Imager (G-LiHT) data. Sensitivity to the amount of training data is examined with increasing mapping accuracy observed as more training data are used. Four processing levels of ARD are considered independently and the mapped results are compared: (i) TOA ARD; (ii) surface ARD; (iii) bidirectional reflectance distribution function (BRDF) adjusted atmospherically corrected ARD; and (iv) weekly composited BRDF adjusted atmospherically corrected ARD. The atmospherically corrected ARD provide marginally the highest mapping accuracies, although accuracy differences are negligible among the four (≤0.07% RMSE) when modest amounts of training data are used. The TOA ARD provide the most accurate maps compared to the other input data when only small amounts of training data are used, and the least accurate maps otherwise. The results are illustrated and the implications discussed.

Highlights

  • Since the opening of the Landsat archive, novel land cover characterization and change detection algorithms have been developed with many focusing on forest mapping [1,2]

  • This study examines the suitability of Analysis Ready Data (ARD) for percent tree cover mapping and the sensitivity of the results to the ARD processing level

  • The resulting maps based on the top of atmosphere (TOA) ARD were more accurate than the ones based on the other processing levels when sparse training data (≤0.16% per tree) were used and were the least accurate when the most training data were used

Read more

Summary

Introduction

Since the opening of the Landsat archive, novel land cover characterization and change detection algorithms have been developed with many focusing on forest mapping [1,2]. Mapping forest/non-forest cover is often straightforward and so sophisticated pre-processing such as atmospheric correction may not be required [3,4,5]. The reliable mapping of percent forest cover, forest degradation or recovery, especially over large areas and/or long time periods, requires Landsat pre-processing to improve the radiometric consistency of the data, including atmospheric correction and minimization of bi-directional reflectance effects and flagging or minimization through temporal compositing of clouds and shadows [4,5,6,7,8,9,10,11]. Five years of Landsat 5 Thematic Mapper (TM) and Landsat 7 Enhanced Thematic Mapper Plus (ETM+) ARD over the state of Washington, which contains forested mountainous regions that are challenging to classify, are considered

Objectives
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call