Abstract
We experimentally demonstrate the non-absorbing interference rejection capabilities of wavelength modulation spectroscopy (WMS) speciation in shock tube experiments by directly comparing WMS measurements against direct-absorption spectroscopy (DA) measurements. The improved capability is demonstrated by probing the P(20) transition of the CO fundamental band using a quantum cascade laser in shock-heated mixtures of CO and N $$_2$$ across a wide range of pressures between 3.5 and 18 atm. In the WMS measurements, the second harmonic (2f) served as the detection signal, while the first harmonic (1f) provided normalization to counteract intensity drift and fluctuations. These perturbations occur in shock tubes because of significant beam-steering noise and imperfect optical alignment when experiments are conducted at elevated pressures. The WMS detection system was evaluated at reflected shock pressures of 3.5 atm, 8.5 atm, and 18 atm, demonstrating improvement in signal-to-noise ratio over concurrent DA measurements. To the authorsâ knowledge, this work represents the first direct experimental quantification of the intensity-fluctuation rejection capabilities of a WMS-based TDLAS sensor at high pressures.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.