Abstract
Studying quantum correlations in the presence of loss is of critical importance for the physical modeling of real quantum systems. Here, we demonstrate the control of spatial correlations between entangled photons in a photonic chip, designed and modeled using the singular value decomposition approach. We show that engineered loss, using an auxiliary waveguide, allows one to invert the spatial statistics from bunching to antibunching. Furthermore, we study the photon statistics within the loss-emulating channel and observe photon coincidences, which may provide insights into the design of quantum photonic integrated chips. Published by the American Physical Society 2024
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.