Abstract

A mu-negative (MNG) metamaterial hemisphere was used to demonstrate impedance matching for a magnetic loop. The metamaterial was comprised of copper spirals deposited on an alumina substrate. The spirals, hemisphere, and magnetic loop were designed to operate at ~450 MHz. The effect of the metamaterial hemisphere was to improve the match of the electrically small loop antenna to the power source impedance increasing the overall radiated power. Results show a 17-dB increase in total radiated power relative to the bare loop. This was lower than anticipated due to losses in the MNG hemisphere.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.