Abstract

Under low-iron conditions, Paracoccus denitrificans excretes a catecholamine siderophore, L-parabactin, to sequester and utilize iron. In this report, we demonstrate the presence of stereospecific high-affinity ferric L-parabactin-binding activity associated with P. denitrificans membranes grown in low-iron medium. Isolated outer membrane components were shown to be three to four times higher in specific activity for ferric L-parabactin. The same amount of binding activity existed whether or not the radiolabel was present in the metal (55Fe) or the ligand (3H) portion of ferric parabactin chelate, suggesting that binding was to the intact complex. Ion-exchange chromatography of a Triton X-100-solubilized outer membrane mixture on DEAE-cellulose resulted in a 10-fold increase in binding activity relative to that present in whole membranes. Polypeptide profiles by sodium dodecyl sulfate-polyacrylamide gel electrophoresis of the products of each stage of the purification showed that binding activity copurified with one or more of the low-iron-induced outer membrane proteins in the 80-kilodalton (kDa) region. Membrane proteins and [55Fe]ferric L-parabactin electrophoresed in nondenaturing gels demonstrated the presence of membrane component(s) which stereo-specifically bound ferric L-parabactin, thus providing independent confirmation of the binding assay results. Moreover, when the band labeled by [55Fe]ferric L-parabactin was excised and profiled by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, 80-kDa polypeptides were the major components present. These results demonstrate the presence of a high-affinity ferric L-parabactin receptor in P. denitrificans membranes and suggest that one or more of the 80-kDa low-iron-induced polypeptides are components of the ferric L-parabactin receptor.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.