Abstract

To combine multi-slice chemical exchange saturation transfer (CEST) imaging with quasi-steady-state (QUASS) processing and demonstrate the feasibility of fast QUASS CEST MRI at 3T. Fast multi-slice echo planar imaging (EPI) CEST imaging was developed with concatenated slice acquisition after single radiofrequency irradiation. The multi-slice CEST signal evolution was described by the spin-lock relaxation during saturation duration (Ts ) and longitudinal relaxation during the relaxation delay time (Td ) and post-label delay (PLD), from which the QUASS CEST was generalized to fast multi-slice acquisition. In addition, numerical simulations, phantom, and normal human subjects scans were performed to compare the conventional apparent and QUASS CEST measurements with different Ts , Td, and PLD. The numerical simulation showed that the apparent CEST effect strongly depends on Ts , Td , and PLD, while the QUASS CEST algorithm minimizes such dependences. In the L-carnosine gel phantom, the proposed QUASS CEST effects (2.68 ± 0.12% [mean ± SD]) were higher than the apparent CEST effects (1.85 ± 0.26%, p < 5e-4). In the human brain imaging, Bland-Altman analysis bias of the proposed QUASS CEST effects was much smaller than the PLD-corrected apparent CEST effects (0.03% vs. -0.54%), indicating the proposed fast multi-slice CEST imaging is robust and accurate. The QUASS processing enables fast multi-slice CEST imaging with minimal loss in the measurement of the CEST effect.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call