Abstract

The relationship between the electromagnetic (EM) enhancement of the optical responses of molecules and plasmon resonance has been investigated using Rayleigh scattering or the extinction spectra of plasmonic systems coupled with molecular excitons. However, quantum optics predicts that the EM enhancement of such optical responses, e.g., fluorescence, Raman, and their nonlinear counterparts, is related directly to optical absorption and indirectly to Rayleigh scattering and extinction. To demonstrate this prediction, a micro-spectroscopic method for obtaining Rayleigh scattering, extinction, absorption, and EM enhancement is developed using single-coupled plasmonic systems composed of silver nanoparticle dimers and dye molecules. The EM enhancement is derived from ultrafast surface-enhanced fluorescence. An evaluation of the spectral relationships demonstrates that the EM enhancement can be reproduced better by absorption than by Rayleigh scattering or extinction. This reproduction is phenomenologically confirmed by numerical calculations based on classical electromagnetism, indicating the importance of absorption spectroscopy in coupled plasmonic systems for evaluating EM enhancement.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call