Abstract

For high repetition ultrahigh-intensity laser system, automatic alignment of structured target is key to achieving consistent particle acceleration and plasma heating. In this work, we demonstrate efficient electron acceleration with two sequential steps of laser processing using a high repetition rate, 30-fs ultrahigh-intensity laser. The first pulse does laser machining and creates a steep cylindrical crater on the surface of a flat stainless-steel target. The crater is formed by the hydrodynamic expansion of the heated surface and by spallation of the inner, deeper material by nonthermal relativistic electrons. The crater shape is well controlled and reproducible with 200 \ensuremath{\mu}m width and 350 \ensuremath{\mu}m depth. The second pulse irradiates deeply inside the crater and interacts with the crater wall, efficiently accelerating electrons via surface plasmonic, without need for target realignment. The laser absorption efficiency increases from 32.5 to 97.5% by the process.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.