Abstract

The development of high-frequency RF linear accelerators (linacs) requires the consideration of several technological challenges, such as electron bunch linearization. Presented in this paper is the design of the interaction circuit for a 48 GHz MW-level three-cavity gyroklystron amplifier, appropriate for application as a millimeter wave power source in a fourth harmonic linearizing system for an X-band linac. The output cavity is operated at the cylindrical TE0,2,1 mode, while the input and buncher cavities are operated at the TE0,1,1 mode. The interaction circuit has been designed using a combination of analytical calculations and particle-in-cell simulations. The optimized gyroklystron is shown, through simulation, to deliver an output power of up to 2.3 MW with a gain of 36 dB and an efficiency of 44% at 48 GHz, when driven by a 140 kV, 37 A electron beam.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.