Abstract

Calmodulin-dependent cyclic nucleotide phosphodiesterase from bovine brain is found to be composed of two distinct subunits, 60,000- and 63,000-dalton polypeptides. Peptide mapping of the subunits by partial proteolysis demonstrated that the 60-kDa polypeptide is not derived from the 63-kDa species. The interaction of the enzyme with three monoclonal antibodies, A6, C1, and A2, and the analysis of immunocomplexes by sucrose density gradient centrifugation revealed that calmodulin-dependent cyclic nucleotide phosphodiesterase exists in three different forms, i.e. (a) homodiamer of 60-kDa, (b) heterodimer of 60- and 63-kDa, and (c) homodimer of 63-kDa. A6 antibody reacts with both 60- and 63-kDa polypeptides indicating that they are immunologically related. C1 and A2 antibodies react with only 60-kDa polypeptide species. By using C1 Sepharose 4B affinity column chromatography, the 63-kDa homodimer which did not bind to the column (Fraction I) was separated from the 60-kDa polypeptide containing isozymes (the heterodimer and the 60-kDa homodimer) which were retained on the column and later eluted as a mixture (Fraction II). Fraction I, the 63-kDa homodimer enzyme, has higher Vmax toward cGMP as substrate than cAMP whereas the opposite was found with Fraction II. The specific activity of Fraction II enzyme toward cAMP was approximately 500 mumol/min/mg, the highest value ever reported for brain calmodulin-dependent cyclic nucleotide phosphodiesterase preparations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.