Abstract

Breast tumors from post-menopausal women contain higher amounts of estradiol than would be predicted from levels circulating in plasma. This observation raised the hypothesis that tumors may synthesize estradiol in situ and increase their tissue estradiol levels via this mechanism. The key enzyme involved in tissue estrogen synthesis, aromatase, is present in breast tumors but, according to some investigators, not in sufficient concentration to be biologically meaningful. We postulated that foci of cells in breast tumors might contain high amounts of aromatase and this locally produced estrogen might act in a paracrine or autocrine fashion. To test this hypothesis, we utilized immunohistochemistry to localize the aromatase enzyme, an histological scoring system to quantitate it, and culture of isolated breast cells to demonstrate its potential regulation. In 26 archival breast tumors, 16 (62%) contained aromatase by radiometric assay. With the immunohistochemical method, we detected areas with staining in the stroma as well as tumor epithelial cells. Staining ranged from the intensity approaching that seen in placenta to levels just distinguishable from background. We adopted an histological scoring system (H-score) from that used to quantitate progesterone receptor levels in tissue and used it to quantitate aromatase activity. A higher histologic score was found in stromal spindle cells (13) than in tumor epithelial cells (4.8). The biochemical aromatase results correlated with the H-score of stromal but not epithelial cells. To further study stromal cells from tumors, we isolated stromal cells from breast tumors and the benign areas of breast distal to the tumor and grew them in culture. Addition of dexamethasone, phorbol esters, and cyclic AMP analogues stimulated aromatase enzyme and messenger RNA levels substantially. Use of aromatase enzyme inhibitors such as letrozole blocked estrogen production but did not alter aromatase message levels. Epithelial cells, whether nonmalignant or cancer derived, exhibited no regulation by dexamethasone, phorbol esters, or cAMP analogues. These data, taken together, suggest that stromal cells may be more important than epithelial cancer cells for estrogen production in breast tumors. The ability to stimulate aromatase activity substantially with various enhancers of aromatase provides further credence for an important biologic role of estrogen production in tumor tissue.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call