Abstract

Quantum mechanics allows for the realization of optimized measurements based on photon counting for the discrimination of nonorthogonal coherent states able to surpass the conventional limits of detection, such as the homodyne and heterodyne limits. Such measurements have a large potential for increasing sensitivities and information transfer in communications and for information processing. In this talk I will describe our current work in the problem of generalized measurements for coherent state discrimination. We implement an optimal inconclusive measurement for binary coherent states [1], a non-projective measurement that allows for achieving the lowest probability of error for a given rate of inconclusive results. This measurement encompasses standard measurement paradigms for state discrimination, specifically minimum error and unambiguous discrimination, and allows to transition between them in an optimal way. [1] M. T. DiMario, F. E. Becerra, Npj Quantum Inf. 8 (1), 1-8.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.