Abstract

Studying the coherence of an optical field is typically compartmentalized with respect to its different optical degrees of freedom (DoFs) -- spatial, temporal, and polarization. Although this traditional approach succeeds when the DoFs are uncoupled, it fails at capturing key features of the field's coherence if the DOFs are indeed correlated -- a situation that arises often. By viewing coherence as a `resource' that can be shared among the DoFs, it becomes possible to convert the entropy associated with the fluctuations in one DoF to another DoF that is initially fluctuation-free. Here, we verify experimentally that coherence can indeed be reversibly exchanged -- without loss of energy -- between polarization and the spatial DoF of a partially coherent field. Starting from a linearly polarized spatially incoherent field -- one that produces no spatial interference fringes -- we obtain a spatially coherent field that is unpolarized. By reallocating the entropy to polarization, the field becomes invariant with regards to the action of a polarization scrambler, thus suggesting a strategy for avoiding the deleterious effects of a randomizing system on a DoF of the optical field.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call